

	
		
		
			
				Toggle navigation
				
				
				
			
			
			
				Toggle navigation
				4.0 version
			
 		
			
				
				PHP PhantomJs
			
		

 		
 				4.0 version
	3.0 version

 		

 		
 		
 				Introduction
	Installation
	Usage
	Custom Scripts
	Caching
	Debugging
	Troubleshooting

 		

	

	
	
		
			4.0 version
		
			4.0 version
	3.0 version
	

	

	
	
		
			
		
			Introduction
	Installation
	Usage
	Custom Scripts
	Caching
	Debugging
	Troubleshooting
	
	Top of Page

	

	
		

	
		
	
	
 PHP PhantomJs

	Run PhantomJS scripts through PHP

	

 You are currently viewing version 4.0 documentation.

	

		
 Usage

	

	

	
	 This page contains some common examples of how to use the PHP PhantomJS library.

	Setup
	Basic Request
	POST Request
	Other Request Methods
	Custom Headers
	Response Data
	Screen Captures
	Output To PDF
	Set Viewport Size
	Set Background Color
	Custom Timeout
	Delay Page Render
	On Load Finished
	PhantomJS Options
	Exceptions

For more advanced customization or to load your own PhantomJS scripts, see the custom scripts section.

Setup

By default the PhantomJS library will look for the PhantomJS executable in the bin folder relative to where your script is running ~/bin/phantomjs. If the executable cannot be found or if the path to your PhantomJS executable differs from the default location, for example you have installed PhantomJS globally, you will need to define the path to your PhantomJS executable manually.

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();
 $client->getEngine()->setPath('/path/to/phantomjs');

 Note

 The path must include the name of the PhantomJS executable in it, not just a path to the directory containing the executable.

Basic Request

A basic GET request:

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createRequest();
 $response = $client->getMessageFactory()->createResponse();

 $request->setMethod('GET');
 $request->setUrl('http://jonnyw.me');

 $client->send($request, $response);

 if($response->getStatus() === 200) {
 echo $response->getContent();
 }

You can also set the URL, request method and timeout period when creating a new request instance through the message factory:

 <?php

 ...

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me', 'GET', 5000);

 ...

POST Request

A basic POST request:

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createRequest();
 $response = $client->getMessageFactory()->createResponse();

 $data = array(
 'param1' => 'Param 1',
 'param2' => 'Param 2'
);

 $request->setMethod('POST');
 $request->setUrl('http://jonnyw.me');
 $request->setRequestData($data); // Set post data

 $client->send($request, $response);

Other Request Methods

The PHP PhantomJS library supports the following request methods:

	OPTIONS
	GET
	HEAD
	POST
	PUT
	DELETE
	PATCH

The request method can be set when creating a new request instance through the message factory:

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me', 'PUT');

Or on the request instance itself:

 <?php

 ...

 $request = $client->getMessageFactory()->createRequest();
 $request->setMethod('PATCH');

 ...

Custom Headers

Custom headers can be added to the request.

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createRequest();

 $request->addHeader('custom_header_key', 'custom_header_value');

For example: when you want to request an authentication protected page with Laravel 5:

 <?php

 public function index(Request $laravel_request) {

 ...

 $request->setMethod('POST');
 $request->addHeader('X-CSRF-TOKEN', csrf_token());
 $request->addHeader('cookie', $laravel_request->header('cookie'));

 ...

Response Data

A standard response object gives you access to the following interface:

	Accessor	Description	Return Type
	getHeaders()	Returns an array of all response headers.	Array
	getHeader(header)	Returns the value for a specific response header e.g. Content-Type.	Mixed
	getStatus()	The response status code e.g. 200.	Integer
	getContent()	The raw page content of the requested page.	String
	getContentType()	The content type of the requested page.	String
	getUrl()	The URL of the requested page.	String
	getRedirectUrl()	If the response was a redirect, this will return the redirect URL.	String
	isRedirect()	Will return true if the response was a redirect or false otherwise.	Boolean
	getConsole()	Returns an array of any javascript errors on the requested page along with a stack trace.	Array

 Note

 If the response ever contains a status code of 0, chances are the request failed. Check the request debug log for more detailed information about what may have gone wrong.

Screen Captures

You can save screen captures of a page to your local disk by creating a screen capture request and setting the path you wish to save the file to:

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createCaptureRequest('http://jonnyw.me');
 $response = $client->getMessageFactory()->createResponse();

 $file = '/path/to/save/your/screen/capture/file.jpg';

 $request->setOutputFile($file);

 $client->send($request, $response);

You will need to make sure the directory that you are saving the file to exists and is writable by your application.

You can also set the width, height, x and y axis for your screen capture:

 <?php

 ...

 $top = 10;
 $left = 10;
 $width = 200;
 $height = 400;

 $request->setCaptureDimensions($width, $height, $top, $left);

 ...

 Note

 Sometimes you may want to wait for all the resources on the page to load before saving a capture to disk. This can be achieved by either delaying the page render or waiting for all resources to load.

Output To PDF

You can output a page to PDF by creating a PDF request and setting the path you wish to save the document to.

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();

 $request = $client->getMessageFactory()->createPdfRequest('http://jonnyw.me');
 $response = $client->getMessageFactory()->createResponse();

 $file = '/path/to/save/your/pdf/document.pdf';

 $request->setOutputFile($file);

 $client->send($request, $response);

You can set an optional repeating header and/or footer to the PDF output.

 <?php

 ...

 $request->setRepeatingHeader('<h1>Header %pageNum% / %pageTotal%</h1>'[, height]);
 $request->setRepeatingFooter('<footer>Footer %pageNum% / %pageTotal%</footer>'[, height]);

 ...

The setRepeatingHeader and setRepeatingFooter methods take an optional second parameter that allows you to set the height of the header and/or footer. This defaults to 1cm. You may also use the %pageNum% and %pageTotal% placeholders to output the current page and total page count for each. Inline styles can be applied to the injected header and footer tags allowing you to define the look and feel.

You can set the paper size and margin of the PDF.

 <?php

 ...

 $width = '10cm';
 $height = '20cm';
 $margin = '2cm';

 $request->setPaperSize($width, $height);
 $request->setMargin($margin);

 ...

If you prefer, you can set a standard paper format such as A4 instead of paper size.

 <?php

 ...

 $format = 'A4';

 $request->setFormat($format);

 ...

Along with the paper orientation.

 <?php

 ...

 $orientation = 'landscape';

 $request->setOrientation($orientation);

 ...

 Note

 Sometimes you may want to wait for all the resources on the page to load before outputting to PDF. This can be achieved by either delaying the page render or waiting for all resources to load.

Set Viewport Size

You can easily set the viewport size for a request:

 <?php

 ...

 $width = 200;
 $height = 400;

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me');
 $request->setViewportSize($width, $height);

 ...

Set Background Color

You can force the background color of the requested page by setting a backgroundColor body style:

 <?php

 ...

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me');
 $request->setBodyStyles(array(
 'backgroundColor' => '#ff0000'
));

 ...

The setBodyStyles method can be used to set any valid CSS styles on the body tag; it is not limited to just background color.

Custom Timeout

By default, each request will timeout after 5 seconds. You can set a custom timeout period (in milliseconds) for each request:

 <?php

 ...

 $timeout = 10000; // 10 seconds

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me');
 $request->setTimeout($timeout);

 ...

Delay Page Render

Sometimes when saving a page to local disk you may want to wait until the page is completely loaded first. In this instance you can set a page render delay (in seconds) for the request:

 <?php

 ...

 $delay = 5; // 5 seconds

 $request = $client->getMessageFactory()->createCaptureRequest('http://jonnyw.me');
 $request->setDelay($delay);

 ...

On Load Finished

Another way of delaying the page render is to wait until all the resources on the page have finished loading. This includes things like images, AJAX requests etc. This can be achieved by telling the client to lazy load the request.

 <?php

 ...

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();
 $client->isLazy(); // Tells the client to wait for all resources before rendering

 $request = $client->getMessageFactory()->createRequest();
 $request->setTimeout(5000); // Will render page if this timeout is reached and resources haven't finished loading

 ...

 Note

 It is recommended that you set a timeout on the request when lazy loading. This guarantees that the request will return content after a period of time even if page resources are still loading. Without this you may run into issues on pages that poll resources at short intervals.

PhantomJS Options

The PhantomJS API contains a range of command line options that can be passed when executing the PhantomJS executable. These can also be passed in via the client before a request:

 <?php

 use JonnyW\PhantomJs\Client;

 $client = Client::getInstance();
 $client->getEngine()->addOption('--load-images=true');
 $client->getEngine()->addOption('--ignore-ssl-errors=true');

 $request = $client->getMessageFactory()->createRequest('http://jonnyw.me');
 $response = $client->getMessageFactory()->createResponse();

 $client->send($request, $response);

You can also set a path to a JSON configuration file that contains multiple PhantomJS options:

 <?php

 ...

 $client = Client::getInstance();
 $client->getEngine()->addOption('--config=/path/to/config.json');

 ...

See the PhantomJS Documentation for a full list of command line options.

Exceptions

The following offers an explanation of the exceptions that may be raised by the PhantomJS library.

	Exception	Description
	InvalidExecutableException	The path to the PhantomJS executable is invalid or is not executable.
	InvalidMethodException	The request method is invalid. It must be one of OPTIONS, GET, HEAD, POST, PUT, DELETE or PATCH.
	InvalidUrlException	The URL you are requesting is an invalid format.
	NotExistsException	A file could not be found or does not exist.
	NotWritableException	A file could not be written.
	ProcedureFailedException	A PhantomJS script failed to execute successfully.
	RequirementException	A PhantomJS script is missing a required element e.g. phantom.exit(1);.
	SyntaxException	A PhantomJS script contains a javascript syntax error.

	

 	← Custom Scripts
	Installation →

	

		
			

			
				© 2021 PHP PhantomJs
			

		
	

	
	
	
	
